Transformation of Output Constraints in Optimal Control Applied to a Double Pendulum on a Cart

نویسندگان

  • Bartosz Kapernick
  • Knut Graichen
چکیده

This paper describes a constraint transformation technique for optimal control problems (OCP) with nonlinear single-input single-output (SISO) systems subject to output constraints. An input-output transformation and saturation functions are used to transform the system dynamics into a new unconstrained representation. This method allows to reformulate the original OCP into an unconstrained counterpart. The transformation technique is applied to a double pendulum on a cart in order to compute optimal trajectories for a multi-stage transition scenario. Simulation as well as experimental results with an additional feedback control demonstrate the applicability of the presented method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Friction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique

Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...

متن کامل

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...

متن کامل

Discrete Time Model Predictive Control Approach for Inverted Pendulum System with Input Constraints

Model predictive control (MPC) includes a receding-horizon control techniques based on the process model for predictions of the plant output. Since late 1970’s several MPC approaches have been reported in the literature. Selection of the most appropriate MPC approach depend on the specific problem. In this paper, discrete time MPC is applied to a inverted pendulum system coupled to a cart. The ...

متن کامل

Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm

One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...

متن کامل

Discrete Mechanics and Optimal Control and its Application to a Double Pendulum on a Cart

In this paper we present a new approach to determine trajectories for changing the state of the double pendulum on a cart from one equilibrium to another and show the experimental realization on a test bench. The control of these transitions is accomplished by a two-degrees-of-freedom control scheme. For the design of the feedforward and feedback control of the system two models of the double p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013